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Abstract— This paper presents a continuous adjoint-based op- systems, boundary control processes are often governed by
timization theory for a general closed-loop transport hypebolic  other auxiliary dynamical processes. For example, a pesiti
model controlled via a periodic boundary control to minimize displacement pump may be driven by an electrical motor that

a multi-objective cost functional. The periodic boundary ontrol . traint on th d dina to th t
is subject to a nonlinear differential equation constraint thus IMposes a constraint on theé pump speed according to the motor

resulting in a coupling between the hyperbolic equation andhe torque dynamics. The pump speed in this case is a boundary
ordinary differential equation. Variational principles are used control variable. Thus, in the present framework, we wish to

to derive the Pontryagin’s minimum principle for optimality study a boundary control process of a closed-loop transport
that results in a dual adjoint system. A numerical optimizaion system modeled by hyperbolic PDEs that is coupled to a

method is implemented using the adjoint-based second-orde d ical t db i di diffaesnt
gradient method to solve for the optimal trajectory of the catrol. ynamical systeém governed by nonlinear ordinary diffaeen

Numerical methods for solving the hyperbolic equation usig €duations (ODEs) via a periodic boundary condition.
an explicit-scheme, wave splitting method and for solving e In this study, we will develop a continuous adjoint theory

adjoint equation using an implicit scheme and a quasi-stead to deal with this type of closed-loop transport systems. The
state method are described. theory will then be applied to develop a numerical optimiza-
tion for a closed-loop fluid transport system to minimize a
I. INTRODUCTION multi-objective cost functior_l. S(_)Il_Jtions to hyperbolicj(aidt _
: - _ . systems are based on an implicit-scheme, first-order upwind
Hyperbolic partial differential equations (PDEs) are uted method as well as a quasi-steady state method. We demenstrat

model transport systems whose information is carried fram Othe optimization method by a numerical example of a closed-
point to another within those systems as a function of sp%%p fluid flow problem

and time [1]. Examples of transport systems are numerous

such as fluid flow in gas distribution pipelines [2], air traffi II. HYPERBOLIC TRANSPORT MODEL

systems [3], highway traffic systems [4], to hame a few. These .
. . . o Transport phenomena are governed by the conservation laws
equations describe wave propagation that exists in trahspo

svstems 1o bropagate information from one boint to anoth((;}(r:]uations which dictate the conservation of some quastitie
y propag P such as traffic density, mass flux, and enthalpy. These equa-

within the continuum. As with any PDESs, boundary conditiont?OnS are generally hyperbolic in nature. For a 1-D system

are used to specify configurations of these transport systém : . .
) e N~ o . . these equations are expressed in a conservation form as [5]
the information is carried in one direction without returgito

its starting position, then we say that the system is opep:lo 9y | OF (y,z) Y Q(y,2)=0 Vzel0,L],te0,T]
An example of an open-loop system is gas flow through andt Ox 1)

aircraft engine. On the other hand, if the information retur herey (z,t) : [0, L] x [0, 7] — R" in classC! is a vector of
to its starting position, then the system is said to be Close\cgonserved’quén{itiei‘ (y’ 2) is a flux function, andQ (y, )
loop. An example of a closed-loop system is the cardi(i)s- a non-homogeneo,us 7source termQity, z) : 0 then7the
vascular circulatory system. Boundary conditions assedia steady state solution of (1) is the conse;vation I,aws

with closed-loop systems are usually periodic in nature.

The flow of information is usually supplied at the system F(y,z) =C Vxe€(0,L) 2
boundary by a forced process that provides a motive forcev%erec
move the information along the way by wave propagation. ForBy explicit differentiation, (1) can be rewritten in as
example, a common device for accomplishing this objective '
in fluid transport systems is a pump which supplies a positi@ +A(y,z) 9y +B(y,z)=0 Ve (0,L),te (0,7T)
pressure head to displace the fluid volume in the flow diractio 9¢ e ’ Y 7(3)
Such a process whereby the control is applied at the boundWP(ereA (y,) : R" x [0,L] — R" x R" is a characteristic
of the continuum is called a boundary control process. Ih relatrix sucr; thatA (y,x)’ — F, (y,z) and B (y,z) : R" x
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is a constant vector.



Equation (3) is a system of first order, quasilinear hypecbolforcing function that relates the transport state vectbss-a 0
equations due to the fact that the mattixhasn real, distinct andxz = L and the boundary control vectar

eigenvalues such that Theorem 1:To ensure the boundary condition compatibility
for all signs of eigenvalues, the Fréchet derivative or the
A (A) <X (A) <. Aq (A) Jacobian ofg with respect toy (L, ¢) is required to have a
for all y (x,t) € R*, z € [0, L], andt € [0, T]. full rank or _
Under this condition, the matriAA is diagonalizable using dim [gy(zn] =n ()

Proof: Let m be the number of negative eigenvalues.
If m = 0, then from (6), there are independent boundary
A =AD" ! (4) conditions withy (0, ¢) that are sufficient to provide informa-

] ) ] ] ] tion for n positive eigenvalues. Thus, the compatibility for
vv_here<I> is an matrix qf the.r|ght eigenvectors a is a positive eigenvalues is satisfied. #. = n, since gy,
diagonal matrix of the right eigenvalues Af is full rank from (7), then there are alsp independent

_ g boundary conditions witly (L, t) that are sufficient to provide
A =diag (%12, dn M, Atz -5 An) - (5) information forn negative (eige)nvalues. The compatibility for
wherem < n is the number of negative eigenvalues. negative eigenvalues is thus satisfied.0lf< m < n, we
The eigenvalues are the wave speeds of the transport s§f3osen —m independent boundary conditions wigh(0, ¢).
tems and the direction of the wave propagation is calledTaen, From (7), there are: remaining boundary conditions
characteristic direction. Ifn > 0, the information in the with y (L,t). Since there are: — n positive eigenvalues and
continuum is carried in both the upstream and downstreamnegative eigenvalues, then the compatibility for mixeghsi
directions by negative wave speedls i = 1,2,...,m and eigenvalues is thus satisfied. ]
positive wave speeds;, i = m-+1,m+2,...,n; respectively. In many real systems, boundary control processes are actu-
If the solution domain i%) < x < L, then for the information ally controlled by other auxiliary processes. These aamili
to be transported in the upstream direction by the negatipeocesses may be dynamical so that their dynamics can be
wave speeds, information must exist at the boundary L. described by a nonlinear ODE
Similarly, information must also exist at the boundary= 0 .
in orde)r/ for the information to be carried downstr;m by a=f(y 0%,y (L1),uv) 8)
the positive wave speeds. Therefore, the number of upstregfiere v (¢) : [0,7] — R! is an auxiliary control vector that
and downstream boundary conditions must match the numpgfongs to a convex subset of admissible auxiliary control
of negative and positive eigenvalues. This is known as the, c R, andf (y (0,¢),y (L,t),u,v) : R* x R" x R™ x
boundary condition compatibility. R! — R™ is a nonlinear function.
Thus the auxiliary control vectov actually influences the
boundary control vectoun, which in turn controls the behavior
of the closed-loop transport system described by (3) and the
periodic boundary condition (6).

a similarity transformation [6]

1. CONTINUOUS ADJOINT OPTIMALITY

Optimal control and optimization theories of hyperbolic
systems has been studied extensively in mathematicad-iter
ture. Within the theoretical framework of systems governed
by PDEs, control of such systems can exist as distributed
control, boundary control, interior pointwise control,aihers.
Hou and Yan studied the long time behavior of solutions for

In a closed-loop transport system, information is carriean optimal distributed control problem for the Navier-Stek
from one point to another and then returned back to the startiequations [8]. Nguyen et al investigated a flow control peabl
position as illustrated in Fig. 1. To enable this informatioWith interior pointwise control [9]. Optimal control prodrhs
flow, a periodic boundary control process is embedded with@ transport systems with boundary control have been exam-
the system. For a closed-loop system, the boundary conditidned for many different types of constraints imposed onegith
atz = 0 are affected by the boundary conditionsazat= L.  State or control variables. Raymond and Zidani investtjate
since the information must be returned to its starting pmsit Necessary optimality conditions in the form of a Pontryagin
Thus, in general for a closed-loop system, we specify tfeinimum principle for semilinear parabolic equations with
following general nonlinear periodic boundary conditiar f Pointwise state constraints and unbounded control [10§a€a
2) et al established second order sufficient conditions foalloc

v (0,t) = g(y (L,t),u(t) vt € [0, T] (6) optimality of elliptic equations Wlth pointwise constr_laBn
on the boundary control and equality and set-constraints on
whereu (t) : [0,7] — R™ in classC! is a boundary control state variables [11]. Kazemi obtained adjoint equatiomsafo
vector, andg (y (L,t),u) : R® x R™ — R” is a nonlinear degenerate hyperbolic equation [12].

Fig. 1 - Closed-Loop Transport Model



Adjoint method is well-known in optimization theories as ifollowing inner product operation i is equivalent
provides an indirect method for solving optimization perbk.

For a transport system governed by hyperbolic equations, tw (Dz,A), ;) = — (2, D" A},
types of adjoint formulation are used: discrete adjoint and I T 0 T\ 0
continuous adjoint. Any hyperbolic equation can generady Tz (A A) > - <Z ’ (A A) >t (12)

discretized into a system of ODEs by means of numerical Proof: The inner productDz, ), ;) in Ls is
discretization techniques such as finite-difference ortdini T L

element methods. If the adjoint method is formulated with <Dz’)\>(m 9 :/ / M\ Dzdzdt

the discretized hyperbolic equations, then this is known as ' 0 Jo

discrete adjoint method. On the other hand, continuousrdjo |ntegrating by parts yields

method is normally applied directly to the original hypédibo

equations. This method has been used in aerodynamic design/” (& - ok

optimization studies involving the Euler and Navier-Stwke /0 /o A Dzdzdt = _/0 /o z' D" Adzdt
equations [13]. Nadarajah et al compared the discrete amd co T - . - -
tinuous adjoint methods in aerodynamic design optimizatio +/ [(ZL) (AL) A= (2°) (A°) AO} dt
and suggested that the continuous adjoint method affords a 0

certain advantage over the discrete adjoint method forédavi We define the following inner products

Stokes flow problems [14]. In the present study, we extend

this method to the present hyperbolic system with nonlinear <zL, (AT)\)L> - <z0, (AT)\)0> -
differential equation constraints on a periodic boundarg-c ¢ ¢

T
dition. To formulate the continuous adjoint method for this / {(ZL)T (AL)T AL _ (ZO)T (AO)T )\0} di
system, we seek a solution of the hyperbolic system above 0
that minimizes the following multi-objective cost funatial Equation (12) is thus obtained. m

Definition 1: Let I': X — Y be a functional withX,Y in
Banach spaces and € X. If there exists a continuous linear
operatorVF (o) : X — Y for any variationd € X such that
F(a+e¢d) - F(a)

e

T L
min J (y,u,v) = / / Ly (y) dzdt
o Jo

VF ()6 —

T
+/ L2 (yoayLvuvv) dt (9) lim
0

e—0

|-

whereL; is an objective function defined over the continuurnthenv (c) is called a Gateaux derivative d@f at a.

of the transport systenmy,, is an objective function defined \we now define the Hamiltonians

on the system boundary, and the superscriptand L are

short hand notations denoting the associated vector dyanti Hi(y,2,A\)=L —A'B (13)
evaluated atr = 0 andx = L, respectively.

0 L _ T
The following assumptions are required: Hy (y 24 ’u’v’“) =Llotpf (14)
(Al): Equation (3) admits smooth solutions for shock-free \we are now ready to state the necessary conditions for
conditions. . optimality.
(A2): v € Lo, the space of real value functionsitt for  Theorem 2:If (A1)-(A3) are fulfilled and if (y,a,v) is
which the norm||v|| is square-integrable. an optimal solution of (9), then there exist adjoint varésbl

(A3): The Fréchet derivatives df,, L, B, g, f, andh X (z,¢) : [0, L] x [0,T] — R™ andu : [0, 7] — R* that satisfy
with respect toy, y°, y%, u, v, andw exist and are boundedthe following dual adjoint system
so as to satisfy the Lipschitz condition.

T T _
We note that (1) also has discontinuous solutions known as A¢ + (A )‘)m TH =0

L 0
entropy solutions [7]which will not be treated here. (ATN)" =H) 1 +gl (ATA) +gg.Hy o (15)
The transport system above is posed as a boundary control Az, T)=0
problem of hyperbolic equations with nonlinear differaiti
equation constraints. ji1=—Hj,—gl (ATA)" - gu Hy 4o (16)
Lemma 1:Let D be a nonlinear differential operator and p(T)=0
D* be its adjoint differential operator such that for some ) ) ] N
z(z,t) € R" and A (z,t) € R" with a terminal time transversality condition
L
Dz = A% (10) / Lif_pdx+ La|;_gp =0 (17)
ox 0
such that the optimal control is one that satisfies the fatigw
D*\ — 9 (AT)\) (11) Pontryagin’s minimum principle
or o
o v =arg min H; (y% y%, q,v, 18
where the superscript is the transpose operator, then the & VeVus ( H) (18)



Proof: Let o = (z,p) be solutions to3 = (y,u) in This circular dependency and the fact that the hyperbolic-
variations for a variatiory in v, then the variation in the cost ODE system is defined at the initial time while the adjoint
functional from (9) is computed as dual system is usually specified at the terminal time pose a

B B challenge for the nonlinear constrained optimization.

AJ(q) =VJ(B)+J(B.Vv+aq) —J(B,¥)>0 Thus, for an adjoint-based nonlinear optimization, the so-
where the Gateaux derivative dfat 3 is evaluated as lution usually involves a two-point boundary value problem
whereby a original hyperbolic-ODE system is solved by
forward-time integration from the initial time. On the othe

hand, the adjoint system is usually solved by backward-
+ <H2T.,y0vzo>t + <H2T.,yLvZL>t +(Hj ), — (D), time integration from the terminal time when its solution is
L normally specified. The solution of this optimization preiol
+ ot (/ Ly|,_pde + L2|t_T> is further complicated by the nonlinear coupling between th
0 hyperbolic PDE and ODE at the periodic boundary. Since a
From the boundary condition (6), we have the following’DE System is usually solved by discretization of the sofuti
variations domain into a flnlt_e-dlmer}smnal system qf potentially targ_
number of grid points for improved numerical accuracy, this
generally can result in a significantly large-scale optatian
From Lemma 1 and the variations in the boundary conditigemroblem. The size and complexity of the discretized hyplzbo
(6) plus vanishing variations in initial conditions for (&hd PDE constraints often pose significant challenges in numer-
(8), this becomes ical optimization methods for these systems. For instance,
3-D hyperbolic problems can result in a PDE simulation
VI (B) = <>\t+D*>\+H1T_,y,Z>(I7t) that can often scale to millions of variables. Large-scale
—(z(z,T), A (2,T)), optimization problems are a current subject of research in

- - 0 - L the field of numerical optimization [15]. Moreover, due to
(gyiHyo +e0e (AN + B, — (ATA)" 2)

VJ (/8) = <H]j|:y7z>(m,t) - <A7 Zt)(m,t) - <A’ DZ> (z,t)

0_ T L T
zZ° =g,z +gyu

numerical stability, hyperbolic PDE solutions may use &ipl
numerical scheme that requires very small time steps which
can significantly contribute to the computational speedafor
single iterative solution.

t
0 .
+ <gI (ATXN) +glH)yo+Hy, + ,uT,p>t

L
— ""T (T)p (T) =+ 5t </ L1|t:T dI + L2|t—T>
0

Compute y(x,0
SettingVJ (8) = 0 for arbitrary variationo results in (15)- s
(17). Then the variation in the cost functional becomes
T .
AJ (q) = / [HQ (}_’07 yLa ﬁ7 ‘_’ + q7 IJ’) - NT’E} dt Guess v(f)
0

T
_/ [HQ (y07yL7ﬁ7\7’H) - ""Tﬂ] dt >0
0

Compute y(x,/) and
u(r) by integration
forward in time

Compute A(x,7) and
w(7) by integration
backward in time

This leads to the Pontryagin’s minimum principle

H2 (yoayLaﬁa\_’+q7N) >H2 (yoayLaﬁavau)

Update v(/) by
Gradient Method

|Hy | m Compute H,

for all values of the variation. [ ]
Equation (18) is the equivalent Weierstrass condition fiamsy
variations. For weak variations whanis unconstrained and
L, and L, are convex, the Pontryagin’s principle leads to the

Ouput y(x,1), u(), and

Legendre-Clebsch condition Vi)
HQ,V (}_’07 }_,La v, p’) =0
H v (7%, 5, 0,v, 1) >0 (19) Fig. 2 - Schematic Diagram of Gradient Method

For a general optimization problem, the gradient method has
IV. NUMERICAL OPTIMIZATION a certain appeal in that the system equations are solvedyexac
Adjoint-based optimization of the coupled hyperbolic-ODE&t each iteration, with the control variable being pertdrbe
system in the adjoint framework requires solving the sohuti from step to step to “home in” on the optimal solution. In athe
of the control variabler (¢), which is a function of the adjoint words, the algorithm simulates the system dynamic response
variable p (t) according to (19). However, the solutions ofwith varying control histories from one iteration to the hex
the adjoint variables\ (z, ¢) andu (t) depend on the solution The solution method usually starts with an initial guesshef t
of the hyperbolic variabley (x,¢) and the boundary control control. This then allows the state equations to be comlglete
u (t), which in turn is a function of the control variable(t). determined by integration forward in time using the spedifie



initial conditions. Once the state trajectory is computi, V. COMPUTATIONAL METHODS

adjo_mt equations are mt_egrated _b_ackward In time using theTo implement the gradient algorithm, we need to solve
teminal time transversality conditions. The control isrthe

. 4 . the hyperbolic and adjoint systems. The simplest type of
gpdated for. the next iteration. The whole sollutlon brocess patial discretization for a first-order, hyperbolic PDEthe
iterated until a convergence on the control is obtained.[1

A schematic of the gradient optimization for this particula, rst-order upwind finite-difference method [18]. In flow Wit
PDE-ODE system is shown in Fig. 2. shocks, spatial discretization may not have sufficientiliab

A ¢ Fig. 2. th dient method utilizes th tr(Tquirements and could cause numerical oscillations at the
ds.setenfrct);r] II-? "It €gra flen t'merH Ot utiiizes te iﬁn "Blscontinuities. Various spatial discretization schesash as
grat|e|n o ble 'tamtl' orlnan unc;:_ 10 t2 0 compute € e | ax-Wendroff method incorporate an artificial viscpsit
controt vanablev iteratively according to to dampen these numerical oscillations. From the physical
vt — (@ _ ) gT (20) interpretation of wave speeds, the eigenvalues of the xnatri
2,v(P) . . .
_ . - o _ A dictates the type of numerical methods for the hyperbolic
splitted wheree is a positive-definite control-gradient weight-ppEs. The most general case is when the matrixas mixed-

ing matrix andp is the iteration index. sign eigenvalues. In this case, the mathixcan be splitted into
This update is the well-known steepest-descent algorithg).semi-positive definite matrix and a semi-negative definite

Visualizing a bowl-shaped Hamiltonian functiol; as il- matrix as

lustrated in Fig. 3, the gradieri,, defines the magnitude A=AT+A" (22)

and direction of the local slope of the Hamiltonian function
Perturbing the control by some function éf; , moves the whereA*™ = PAT® " andA- = PA D .
control toward the bottom of the bowl. Proper selection &f th Equation (3) can be written in a wave-splitting form as
step size is critical for a rapid convergence to the miningzi o R o .
control. If € is too small, the convergence may require a large Py, + AT Ty, AP Ty, + 2T B=0 (23)
number of iterations. On the other handgifs too large, the We let ®! — O+ + U~ where U+ — ATA—1@-!
convergence may not occur at all. Therefore, the effectigen d v— — _A—A—I‘Irl We note ?hat if A —
of a gradient method is predicated upon a judicious Choiceg - ' .

N . A o ) 1ag (M, .oy Ams Amt1,---,An) Where A, < 0 for i =
the weighting matrix. If the weighting matrixe is the inverse 1 m oand A, > 0 for i = m + 1 n then
of the Hessian matrix of the Hamiltonian functidd,, then . 7 i - PR

. X A = diag(0,...,0,1,...,1) and A™A =

the method is known as a second-order gradient or Newtod%g(1

Raphson method as [17] ..,1,0,...,0). In order for (23) to converge to a

correct steady state solution, we need to maintain a nuaieric
consistency between the steady state form and the hyperboli
form. This is done by evaluating all the matrices in (23)
at a prior grid point for the positive wave speeds and at a
current grid point for the negative wave speed. Using this
approach, (23) is now discretized using a wave-splittingt-fi
order upwind finite-difference method as

v — () _ { H®

2,vv

r o) (1)

V(P

dyi i~
v WA er,?

TH + ‘I’?;lBi—l =0 (24)

_dy; e Yir1 —Yi _
v AP, —— = L+ ¥ B; =0 25
todt tAY Az T (25)
wherei = 2,3,..., M — 1 denotes the index of the interior
points not on the boundary such that= ]C[_ll L andy; (t) =
y (xiv t)
We now combine Egs. (24) to (25) into a vector form as

dy; i~ Yi— _Yi+1 —Yi
DAy YTVt A YL Y g, =0 (26)

v dt Ax Ax
: o here
Fig. 3 - Steepest Descent Approach to a Minimum w ]
Hamiltonian Function AL = (P, +9) ALTS,
If H, is quadratic inv, then the method should converge Ay = (OF, + \I,;)*l A; WS

within two iterations [17]. However, if the initial guess $tart

the method is too far off the actual solution, the method may Bi 1= (¥, + \I,;)*l (¥} B+ ¥, B)

not converge at all. In practice, the Hessian matHX ..,

is time consuming to calculate analytically, but a numdrica To solve for Eq. (26), we need the information on the system
evaluation of the Hessian matrix may be subject to a numerit@mundaries imposed by the periodic boundary condition (6).
accuracy problem. Since gy () is full rank, g is invertible with respect to



y (L,t). Therefore, the periodic boundary condition (6) is (AT)LﬁO =g (AT)OﬂL + (fyTL +g;LfyTo) v (34
equivalent to o
B v=(f] +glftl)vt+egl (A7) 9"+ 1], (35)
y(L,t) =g " (v (0,1),u) (27) ( ) (a7) >

The advantage of the reversal transformation is that it

The nonlinear periodic boundary condition (6) can now bganeraily results in a stable adjoint equation backward in
decomposed into space and time when the hyperbolic equation is normally

ATA y1 01 = G (yai1,uj41) (28) stable forward in time. This stability is necessary for any
numerical optimization process to succeed. Equation (388) ¢

A A 'y = H(y 1, u541) (29) be discretized as

where G = ATA~!lg and H = A A 1g and_j1 = 49, (Aj)T 9y — (A:Zrl)T Dpr

1,2,..., N —1 denotes the time index such that= {—T. I A

At the incoming boundary: = 0, i = 1 so that ¢?) cannot >-<r T

admit a positive wave which would require the solution to n (A7) Or1— (A7) O

include a point upstream af = 0 that is nonexistent. There- Ax

fore, oply the n(_agative wave speed characteristic_equeziﬁh _ L ATAY (BT‘ D1 — LT )

is admitted. Using the Euler's method, we combine (25) with Yit1 Yitt

(28) as +A AT (By 9, —L{,)=0 (36)

T+ ATA! 1= G (Yasiaa, N wherek = 2,3,..., M — 1 represents the index of; such
( 1,j ) Yij+1 (YM,j+1, Wjt1) 1,5Y1,5 thatk — M —i + 1.
AT (M) At — ¥ .B, At (30) Generally, adjoint equations are quite sensitive to nuragri
1,7 1,7 AI 2,77 4] . . . .
round-off errors and differences in time scales, which may
where the time step\¢ is chosen to satisfy the following potentially cause numerical instability. In order to preve

condition numerical errors, an implicit scheme for integrating (36)ld
be used, but the numerical method is much more complex than
At < mi o 2 (31) licit sch d involve a full matrix inversion atle
min
< (1 T o) max | A (A)] max [\ (F)] an explicit scheme and involve a full matrix inversion atleac

time step. The implicit-scheme discretization is
The first condition is the Courant-Friedrichs-Levy (CFL)

. . . . T T
condition for (26). The tern + « is due to the contribution 9, ,,, — Ot (AF 1) Ok — (Af,01) Fk1in

of the source ternB. The second condition is the numerical At Ax
stability condition for (8) using an explicit time integi@t _ T _ T
scheme. n (Al1,o1) P — (A1) Fnin
We next consider the boundary at= L, i = M. The Ax
situatior_l_is now reverse whereby_ the soluti_on can only_ admit +A AL (B;i+1 Okt — LlT.,ym H)
the positive eigenvalue characteristic equation (24) tician ’ ’
be combined with (29) to yield +A A (B;,j,ﬁk.m - Liyi,j,l) =0 (37)
+ —A-L L . ) = wherel = 2,3,..., N represents the index af such that
(O 1+ ATAT ) Y —H(yij41,u541) e P
’ o _ =N-j5+1.
vt o iYmi — Al j\Il;:fl i <W> At At the boundary, the adjoint solution is treated in a similar
? ? ? x

. manner as before whereby the characteristic adjoint eapsati
— ¥ 1 ;Bn-1;AL (32) for the positive and negative wave speeds are separated alon

Equations (30) and (32) are nonlinear. An iterative meth(Wiith the boundary condition (34)

is implemented to search for the zero solution yof ;11 B T 7 T

andy,, j+1 using information from the previous time step. ¥ ;41 — Y4 (AMfl,jfl) Do141 — (AM,jfl) CAWAS

To solve these equations, the boundary controimust be AT + Ay

determined for a given time history of the contrel by 1 (T - B

integrating (8). Once the information at the system bouydar +AA (ByM,j—lﬂlvl“ - Ll-,yM,jfl) =0 (38)

has been determined, the solution wpf;;, at the interior

points can be found by integrating (26) using Runge-Kutta 9 _9 AT V' (AT ) 9

or Euler’s method. M’ZHA M’l+( Lim1) O A( 2-1) Ou-tin
In order to compute the adjoint dual system, we transform T X

(15) and (16) by reversing the space and time variables using + ATA™! (B;,j,lﬂM—uH - LlT,yz,H) =0 (39)

a distance-to-go variablg = L — 2 and a time-to-go variable

7=T—1t. We also letd (x,7) = A(z,t) andv (7) = p (). 9 AT T AT o

Then, (15) and (16) becoms L+l = 818y o1 -1V M I+1

-7 T T T
I, + (ATﬁ)X + B;ﬂ — LlT,y =0 (33) + AMyjfl (fYM,J‘—l + gyz\/f,j—lfyl,j—l) viyr (40)




Equations (37) to (40) must be assembled into a linear VI. NUMERICAL EXAMPLE

matrix equation for a simultaneous solution at a future time \y,x now demonstrate the general theory by a numerical

stepl + 1 as a function of the current time stép ~ example of a closed-loop fluid transport problem in a closed-
Another approach to improving the numerical stability ofjrcuit wind tunnel as shown in Fig. 4.

the adjoint equation (33) is by treating it as a quasi-steady
state approximation. This is possible if the time scale is RN o

- =0 x=L
substantially different between the adjoint PDE (33) and [ [ \7%7 ool b
the adjoint ODE (35). This time scale difference can be L\ N L ///CJom re;;fﬁ\ Motor
inferred by the magnitude of the largest eigenvalue,cdnd " \‘ ~LL7 ) GV | f
A. Generally, transport systems carry information by wave | Q \ |
propagation at a faster speed than the dynamics imposed at ( \ \ ;
the system boundaries. Another justification for this appho | J . L ‘
is that the control variable (¢) that optimizes the hyperbolic T///‘*@Eil%iiﬂmﬂ/ﬁ\j
system is a direct function of the adjoint variahigt), but ’ /}_—p—@@‘% S

is only indirectly influenced by the adjoint variabke(z,t)
on the boundaryr = 0. Therefore, the quasi-steady state
approximation for the adjoint equation (33) is reasonable.
Let z(x,7) = AT (y,z)X(x,t), then, (15) and (16) The fluid transport process in a closed-circuit wind tuneel i
become a good example of a closed-loop transport process whereby th
TA-T, 7T _ fluid flow is recirculated through a compressor providing the
By A 2oLy =0 (“41) boundary control action. The compressor is controlled hy tw

Fig. 4 - Closed-Circuit Wind Tunnel

auxiliary dynamical processes: a drive motor dynamics, and
2 =gzt + (fyTL + gyTLfyTo) v (42) an inlet guide vane (IGV) dynamics. By controlling the drive
motor speed and the IGV angle, the flow in the test section can
be set as desired. The fluid flow is governed by the following
hyperbolic system with a set of conserved variables; namely

ass flowrn, total pressureyg, and total temperaturé,. We

ety =[rm po To ], then according to (3), the matrices
A andB are defined as

U= (f) +gufo)v+giz"+Ly, (43)

A first order finite-difference discretization can be used
solve (41) and the boundary condition

ziy1 =z — Ax (By A7 Tz + L)) (44) u ed i
= % u {1 - (W_T—l)T} ’)"Tﬂ
1= g;’erIM + (f;M + g;Mf;) v (45) ('yfl)T (771)22T (O'yfl)T
I R
Since the boundary condition (42) is periodic, the solution v
of z results in a full matrix inversion at each time step. In 5 R
addition, » must be solved simultaneously from (43) at each B = Lot (B —y+1)¢
time step. Comparing this to the implicit scheme, the quasi- —(y—1uT¢ (% - )

steady state approach requires fewer operations and heng@.are ,; is the flow speedp is the static pressurd; is the
more efficient method for solving the-adjomt equation (15).tatic temperaturepis the static densityg is the speed of
~ Based on the second-order gradient method, each eaghind, 17 is the Mach numberd is the flow areag is the
iteration, the control variable is updated as loss factor, andy is the specific heat ratio.
1 The compressor provides a periodic boundary control-at
v — y(P) [Lépiv(p)} (fVTu + LQT,V(;,)) (46) 0 andx = L which relates the conservation of mass flow, the
’ total pressure rise, and the total temperature rise thdietze
where we have replaceff, v~ with L, by ignoring the flow recirculation as a function of the boundary contaihat
term £, u in order to simplify the calculation. comprises the compressor speednd the IGV blade angle.
Thus, the control variable depends on the solution @f The drive motor and IGV dynamics dictate constraints on the
obtained fromw which requires solving the adjoint PDE andcompressor speed and the IGV blade angle in such a way that
ODE simultaneously. Thus, initially we guess a time historthese parameters must obey the time varying dynamics af thes
for the control variabler (¢). This information is then used to systems according to (8), wheferepresents the dynamical
solve the hyperbolic equation fgr(z, ¢t) forward in time. The equation ands represents the control parameters of the drive
complete time history of (z,¢) based on the initial guess ofmotor and IGV systems which in this case are the drive motor
the controlv (¢) is then used to solve the adjoint equationsotor resistance and the IGV voltage.
backward in time to obtail\ (z,¢) and u (t) simultaneously. A typical wind tunnel operation is to transfer the flow
The control variabler (¢) is then updated in the next iterationcondition in the test section from one Mach number to another
from (46). This process is repeated until the solution of tHéig. 5 shows a typical operating envelope for a wind tunnel.
control v (t) converges. What we are interested in is to search for an optimal patheof th



Mach number transfer between two fix compressor operatingFig. 6 shows the optimal path of the Mach number transfer.
speeds as shown in Fig. 5 that minimizes the cost functioridy. 7 illustrates the convergence of the control variable

defined in (9) with

1
Li=-=

2

(y —ya) Py —ya)

after just four iterations. Fig. 8 is a plot of the value of the
cost functional driven close to a minimum by the gradient
method. Fig. 9 is a plot of the hyperbolic solution that shows
the variation of Mach number in the flow as a function of
space and time.

L2=—(u—ud)TQ(u—ud)—i—%(V—vd)TR(V—vd)
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Fig. 5 - Wind Tunnel Operating Envelope

The objective functiond,; and L, are convex for some
weighting matricesP > 0, Q > 0, and R > 0 and are
designed to seek a desired terminal condition, denoted by
the subscript, from some initial condition. The optimization
begins with an initial guess of the control variabtewhich
represents the control parameters for the drive motor aMd 1G
systems. The flow solution in the wind tunnel is then computed
forward in space and time from the method developed in
Section 5. Using the computed time histories of all the flow
variables, the adjoint solution is computed backward ircepa
and time using the implicit scheme first and then the quasi-
steady state scheme. A minor convergence problem with the
implicit scheme is observed when the solution appears te hav
reached the bottom of the gradient “bowl”. The cost increase
slightly instead of remaining stable. On the other hand, the

guasi-steady state scheme demonstrates a good convergence

behavior. The convergence of the optimization is rapidrafte
only four iterations.
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Fig. 6 - Optimal Path Transition
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VII. CONCLUSIONS [13]

We have presented an indirect numerical optimization
method using a continuous adjoint approach for a hyperboﬂél
equation with a nonlinear periodic boundary condition sabj
to a nonlinear differential equation constraints. The tardus
adjoint-based optimization method provides a certain adv
tage in that the adjoint solution can be formulated using a
different discretization scheme since the adjoint equatto [17]
also a hyperbolic equation. A dual adjoint system is forrrada [18]
for a multi-objective cost functional comprising an objeet
function defined over the hyperbolic solution domain and
a time-based objective function. The numerical method is
based on a second-order gradient method that can provide
an accelerated convergence if an initial starting solui®n
judiciously selected. The hyperbolic equation is solved in
forward space and forward time from the initial conditiordan
the periodic boundary condition sing an explicit schemejeva
splitting method. Because of numerical stability, the adjo
hyperbolic equation is integrated backward in time using an
implicit scheme. A quasi-steady state method for solving
the adjoint equation is introduced. A numerical example is
performed for a closed-loop fluid transport system. Theltesu
show a fast convergence of the second-order gradient method
The quasi-steady state method results in a more stablésolut
of the adjoint equation than the implicit scheme.

[15]
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